Regional Foundations of Competitiveness <u>Issues for Wales</u>

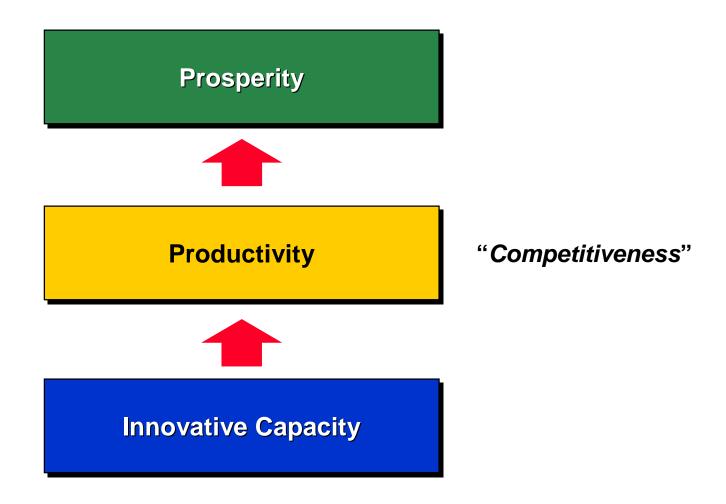
Professor Michael E. Porter Institute for Strategy and Competitiveness Harvard Business School

Future Competitiveness of Wales: Innovation, Entrepreneurship, and Technological Change
Wales (by video link)
April 3rd. 2002

This presentation draws on ideas from Professor Porter's articles and books, in particular, <u>The Competitive Advantage of Nations</u> (The Free Press, 1990), "The Microeconomic Foundations of Economic Development," in <u>The Global Competitiveness Report 1998</u>, (World Economic Forum, 1998), "Clusters and the New Competitive Agenda for Companies and Governments" in <u>On Competition</u> (Harvard Business School Press, 1998) and ongoing statistical study of clusters, <u>Competing for Prosperity: The Microeconomic Foundations of Development</u>, forthcoming, and "What is Strategy?" (Harvard Business Review, Nov/Dec 1996). No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, mechanical, photocopying, recording, or otherwise - without the permission of Michael E. Porter.

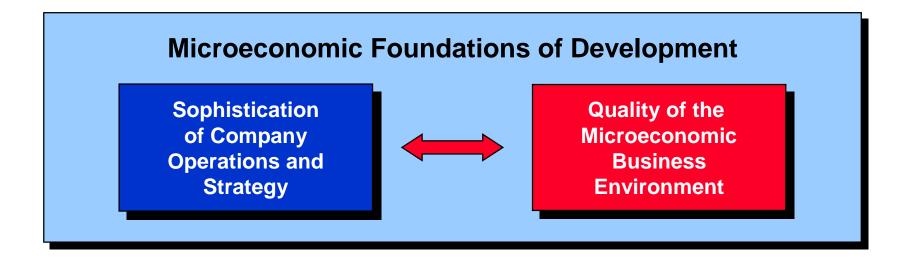
Agenda

- Foundations of Competitiveness
- The Role of Regions in Competitiveness
- Issues for Wales

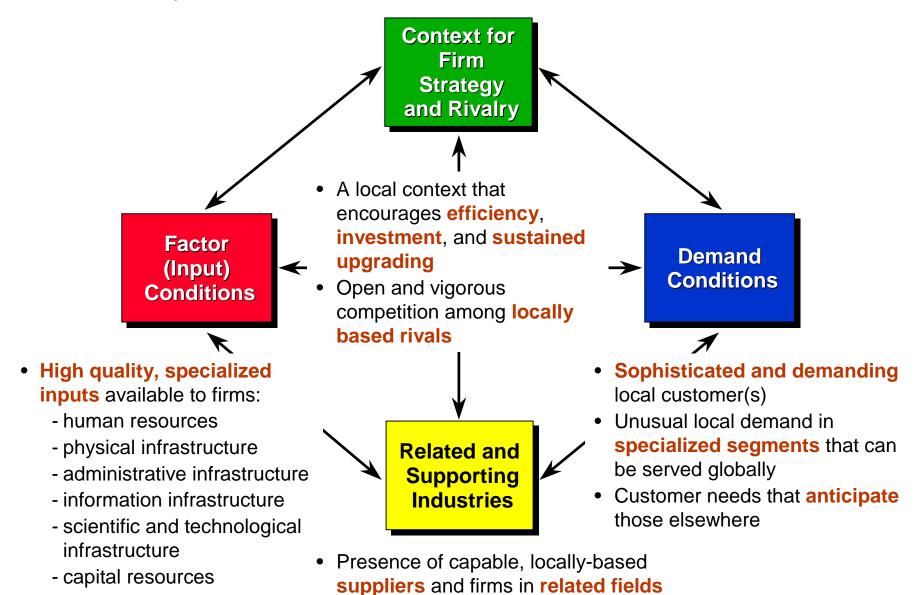

Sources of Rising Prosperity

- A region's standard of living (wealth) is determined by the productivity with which it uses its human, capital, and natural resources. The appropriate definition of competitiveness is productivity
 - Productivity depends both on the value of products and services (e.g. uniqueness and quality) as well as the efficiency with which they are produced
 - It is not what industries a region competes in that matters for prosperity, but how firms compete in those industries
 - Productivity in a region is a reflection of what both domestic and foreign firms choose to do in that location. The location of ownership is secondary for national prosperity
 - The productivity of "local" industries is of fundamental importance to competitiveness, not just that of traded industries

- Regions compete in offering the most productive environment for business
- The public and private sectors play different but interrelated roles in creating a productive economy


Innovation and Prosperity

- Innovation is more than just scientific discovery
- There are no low-tech industries, only low-tech firms


Determinants of Productivity and Productivity Growth

Macroeconomic, Political, Legal, and Social Context for Development

- Sound macroeconomic policies, a stable political environment, a trusted legal framework and progress in improving social conditions are necessary to ensure a prosperous economy, but not sufficient
- Competitiveness ultimately depends on improving the microeconomic foundations of competition

Productivity and the Microeconomic Business Environment

Presence of clusters instead of isolated industries

- natural resources

Wales 04-03-02 CK Copyright © 2002 Professor Michael E. Porter

Clusters and Competitive Advantage

Current Productivity / Efficiency

Innovation and Productivity Growth

New Business Formation

 Competitive advantage is fundamentally enhanced by externalities / linkages across firms, industries, and associated institutions

Institutions for Collaboration

General

- Chambers of Commerce
- Professional associations
- School networks
- University partner groups
- Religious networks
- Joint private/public advisory councils
- Competitiveness councils

Cluster-specific

- Industry associations
- Specialized professional associations and societies
- Alumni groups of core cluster companies
- Incubators

- Institutions for Collaboration (IFCs) are formal and informal organizations that
 - facilitate the exchange of information and technology
 - foster cooperation and coordination
- IFCs can improve the business environment by
 - creating relationships and the level of trust supporting them
 - encourage the definition of common standards
 - facilitate the organization of collective action
 - support the definition and communication of beliefs and attitudes
 - providing mechanisms to develop a common economic or cluster agenda

Institutions for Collaboration Selected Institutions for Collaboration in San Diego

Private Sector

- UCSD CONNECT
- San Diego Chamber of Commerce
- San Diego MIT Enterprise Forum
- Corporate Director's Forum
- San Diego Dialogue
- Service Corps of Retired Executives, San Diego

Informal Networks

- Linkabit Alumni
- Hybritech Alumni
- UCSD Alumni
- Scripps Research Institute Alumni

Joint Private / Public

- San Diego Regional Economic **Development Corporation**
- Center for Applied Competitive **Technologies**
- San Diego World Trade Center

Public Sector

- San Diego Association of Governments
- San Diego Regional Technology Alliance
- San Diego Science and Technology Council
- Office of Trade and Business Development
- Small Business Development and International Trade Center

Agenda

Foundations of Competitiveness

• The Role of Regions in Competitiveness

Issues for Wales

Regional Economic Performance Measures

Overall Economy

Employment Growth

Rate of employment growth

Unemployment

Percentage of persons unemployed

Workforce Participation

Proportion of population in the workforce

Average Wages

Payroll per person

Wage Growth

Growth rate of payroll per person

Cost of Living

Cost of living index

Productivity

 Output per employee or total factor productivity

Exports

 Value of manufactured and commodity exports per worker

Innovation Output

Patents

Number of patents and patents per worker

Establishment Formation

Growth rate of establishments

Venture Capital Investments

Value of venture capital invested

Initial Public Offerings

Number of initial public offerings

Fast Growth Firms

Number of firms on the Inc. 500 list

Productivity growth

Growth in output per employee or total factor productivity

Regional Economic Performance Measures <u>State of Michigan</u>

Overall Economy

Employment growth per year, 1990 to 1999

in Michigan: 1.77% (rank 34)

• in the US: 1.90%

Average wages in 1999

■ in Michigan: \$34,607 (rank 11)

■ in the US: \$32,109

Wage growth per year, 1990 to 1999

■ in Michigan: 3.97% (rank 22)

• in the US: 4.03%

Gross state product per employee in 1999

• in Michigan: \$55,511 (rank 19)

• in the US: \$56,882

Annual growth in exports, 1995-1999

■ in Michigan: 2.83% (rank 32)

• in the US: 4.41%

Innovation Output

Patents per 10,000 employees

• in Michigan: 8.8 (rank 13)

• in the US: 6.3

Patents growth per year, 1990 to 1998

in Michigan: 2.64% (rank 37)

■ in the US: 3.19%

New establishment formation,² 1990 to 1999

in Michigan: 4.55% (rank 27)

■ in the US: 4.60%

Fast growth firms (Inc 500), 1991 to 2000

■ in Michigan: 137 (rank 13)

Venture capital investments, \$ per worker, 1999

• in Michigan: \$13 (rank 38)

Initial public offering proceeds per 1,000 firms, 1999

■ in Michigan: \$6,982 (rank 11)

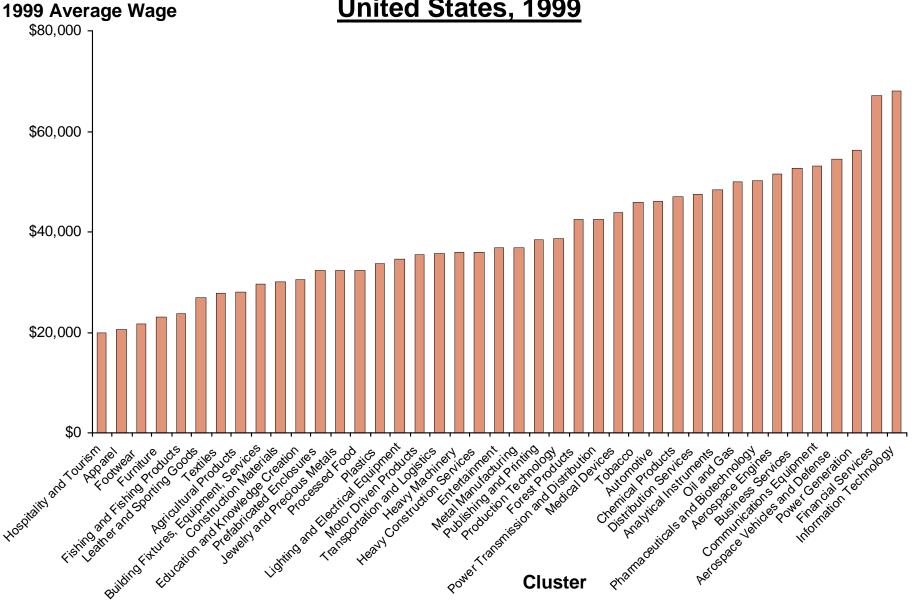
Note: ¹Excludes government and agricultural employment. ²Refers to the formation of establishments in traded industries, competing across regions. Data Source: Cluster Mapping Project, Institute for Strategy and Competitiveness, Harvard Business School (www.isc.hbs.edu).

Wales 04-03-02 CK Copyright © 2002 Professor Michael E. Porter

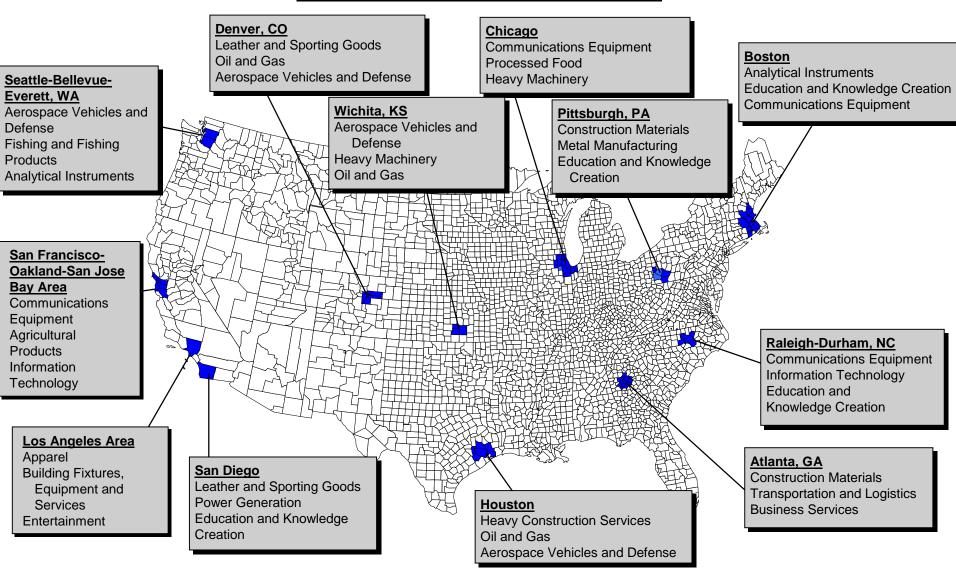
Patents by Organization

Research Triangle MSA, 1995–1999

	Organization	Patents Issued from 1995 to 1999
1	International Business Machines Corporation	495
2	Ericsson, Inc.	325
3	Becton, Dickinson and Company	128
4	North Carolina State University	128
5	Duke University	127
6	University of North Carolina — Chapel Hill	124
7	Square D Company	48
8	Novartis	46
9	ABB Power T&D Company, Inc.	44
10	Alcatel Network Systems, Inc.	43
11	Mitsubishi Semiconductor America, Inc.	41
12	Lord Corporation	36
13	Kennametal, Inc.	29
14	Rhone-Poulenc, Inc.	29
15	Telefonaktiebolaget LM Ericsson	28
16	Caterpillar, Inc.	26
17	Cree Research, Inc.	26
18	E.I. DuPont De Nemours and Company	26
19	MCNC	25
20	Raychem Corporation	24
21	Reichhold Chemicals, Inc.	24
22	American Sterilizer Company	21
23	Siemens Energy and Automation, Inc.	21
24	Northern Telecom Limited	20
25	Research Triangle Institute	20

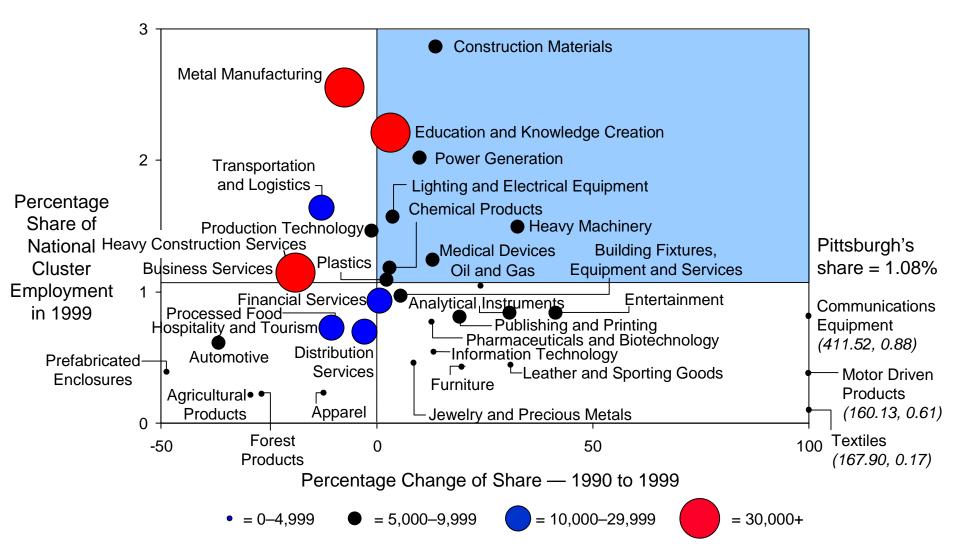

The Composition of Regional Economies <u>United States</u>

	Traded Clusters	Local Clusters	Natural Resource- Driven Industries
Share of Employment Employment Growth, 1993 to 1999	32.1% 2.5%	67.1% 2.8%	0.8% -0.1%
Average Wage Relative Wage Wage Growth	\$41,678 134.0 5.0%	\$26,049 83.8 3.8%	\$31,264 100.5 2.5%
Relative Productivity	144.1	79.3	139.5
Patents per 10,000 Employees	20.48	1.38	6.40
Number of SIC Industries	592	241	46


Note: 1999 data, except relative productivity which is 1997 data, and patents data which is 1998 data Source: Cluster Mapping Project, Institute for Strategy and Competitiveness, Harvard Business School, www.isc.hbs.edu

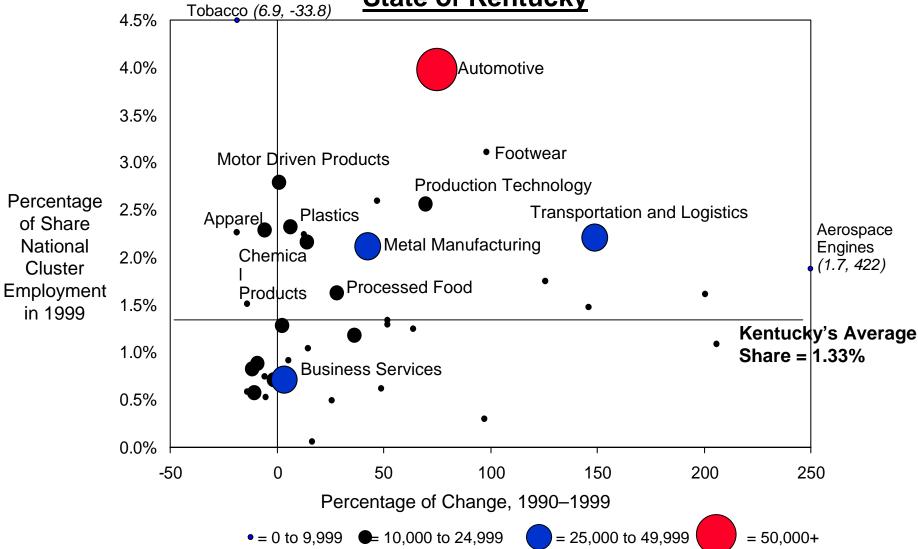
Wales 04-03-02 CK Copyright © 2002 Professor Michael E. Porter

Average Wages in Traded Clusters United States, 1999


Specialization of Regional Economies <u>Selected U.S. Geographic Areas</u>

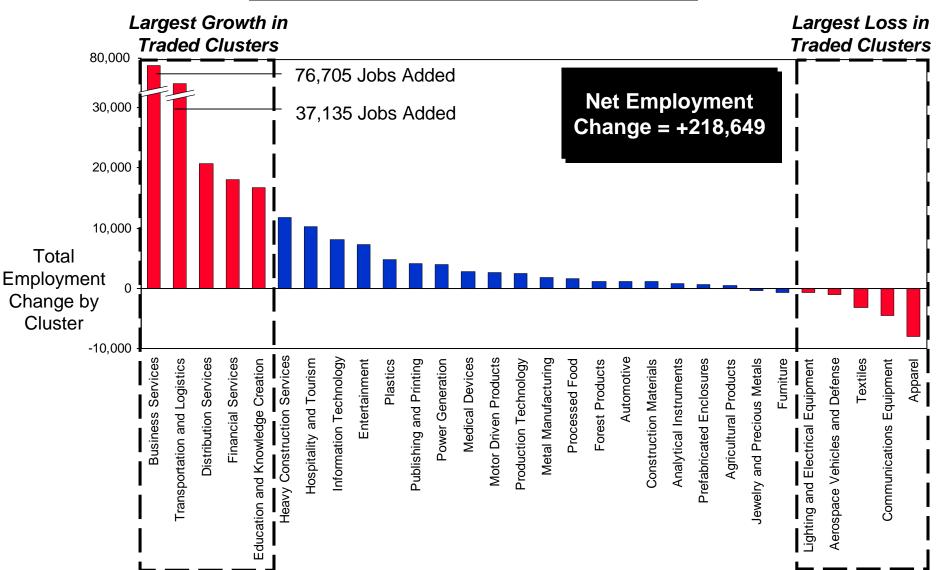
Note: Clusters listed are the three highest ranking clusters in terms of share of national employment Source: Cluster Mapping Project, Institute for Strategy and Competitiveness, Harvard Business School, www.isc.hbs.edu

Wales 04-03-02 CK Copyright © 2002 Professor Michael E. Porter

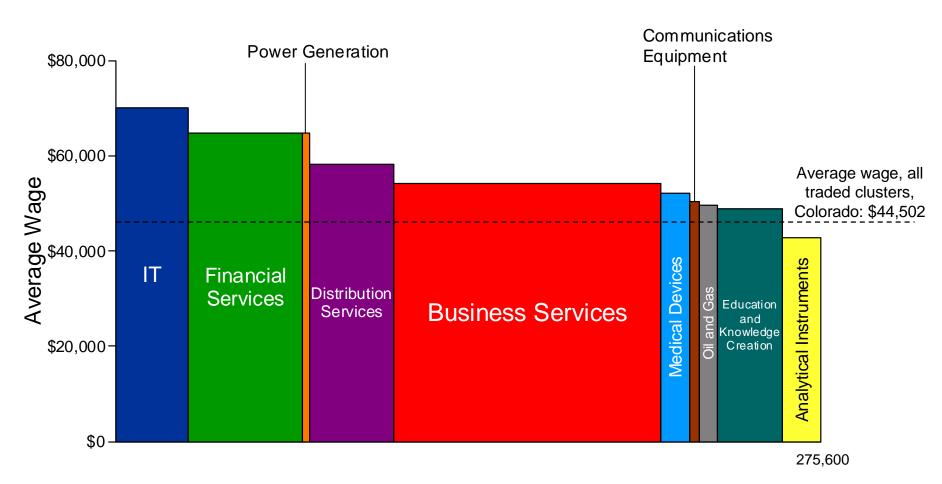

Specialization of Regional Economies <u>Pittsburgh Metropolitan Area</u>

Note: Uses narrow cluster definitions that assign industries uniquely to one cluster each; data points that fall outside the graph are placed on the borders with their values given in parentheses (share, change)

Source: Cluster Mapping Project at Institute for Strategy and Competitiveness, Harvard Business School, www.isc.hbs.edu


Specialization of Regional Economies State of Kentucky

Note: Uses narrow cluster definitions that assign industries uniquely to one cluster each; data points that fall outside the graph are placed on the borders with their values given in parentheses (share, change)


Source: Cluster Mapping Project at Institute for Strategy and Competitiveness, Harvard Business School, www.isc.hbs.edu

Traditional Strengths of Atlanta Area Job Creation by Cluster, 1990–1999

Note: Uses narrow cluster definitions that assign industries uniquely to one cluster each Source: Cluster Mapping Project at Institute for Strategy and Competitiveness, Harvard Business School, www.isc.hbs.edu

Top 10 Highest Wage Traded Clusters, 1999 State of Colorado

Number of Workers

The Evolution of Regional Economies Research Triangle

Building the Foundation			w Cluste ⁄elopmen				Innovatio Expand	
U.S. Environ- mental Research Protection Triangle Agency Park opens Founded field office	Troxler Electronics becomes the first locally based tender at Research Triangle Page 1	he Microe Cente ant Caroli ch founde	ed by	Sumitor	enter	BASF oper R&D cente Rhone-Pou acquires Union Cir Carbide op	r Ilec sco opens	Biogen builds mfg. facility Red Hat Software establishes operations
1950s 1971 1960s	1974 1973	19 1975	80 1982	19	83 1984	1986 1994	1995 1996	1997 2000
Alcatel establishes presence IBM establishes manufacturing facility National Institute of Environmental Health Sciences offered space at Research Triangle Park Chemstrand establishes a fiber R&D facility U.S. Forest Service establishes small lab	 Burroughs Wellcome comes to the	Univ. of North Carolina Lineberger Compre- hensive Cancer Center founded	General E sets up re and manu facturing f Northern Telecom establishe U.S. subs Center for Advanced Computin Communi establishe Quintiles	esearch (I- E facility r facility r facility r facility r facility r facility r facility r facility r facility r facility r	 North	Sphinx Pharmaceuticals sold to Eli Lilly North Carolina Informatio Highway project begun throughou the State	Covance opens manu- facturing facility	Networks establishes

Source: Clusters of Innovation project (<u>www.compete.org</u>)

Wales 04-03-02 CK

The Military, Climate, and Research in San Diego

Climate and Geography **Hospitality and Tourism**

Transportation and Logistics

Sporting and Leather Goods

U.S. Military Aerospace Vehicles and Defense

Communications Equipment

Analytical Instruments

Power Generation

Information Technology

Education and Knowledge Creation

Medical Devices

Bioscience Research Centers **Biotech / Pharmaceuticals**

1910 1930 1950 1970 1990

The Evolution of Regional Economies

- Building strong regional economies takes decades
- Key influencing factors include
 - Natural endowments
 - Government actions
 - Civic leadership
 - Entrepreneurship
 - Specialized assets
- Successful regions leverage their unique mix of assets to build specialized clusters
- Regional development involves some inheritance and serendipity, but also purposeful action
- Institutions for Collaboration play an important role in building regional economies
- A coherent strategy is an important prerequisite for effective action

Determinants of Regional Competitiveness

Levels of Influence

Factor (Input) Conditions

National

E.g., Financial market conditions

Regional

- E.g., Public education system
- E.g., Regional universities
- E.g., Communications infrastructure

Regional Cluster

E.g., Cluster-specific research institutions

Context for Firm Strategy and Rivalry

National

- E.g., Intellectual property legislation
- E.g., Monopolies policy

Regional

E.g., Regional tax policy

Regional Cluster

• E.g., Number of local competitors

Related and Supporting Industries

Demand Conditions

National

- E.g., Environmental regulation
- E.g., Consumer protection legislation

Regional

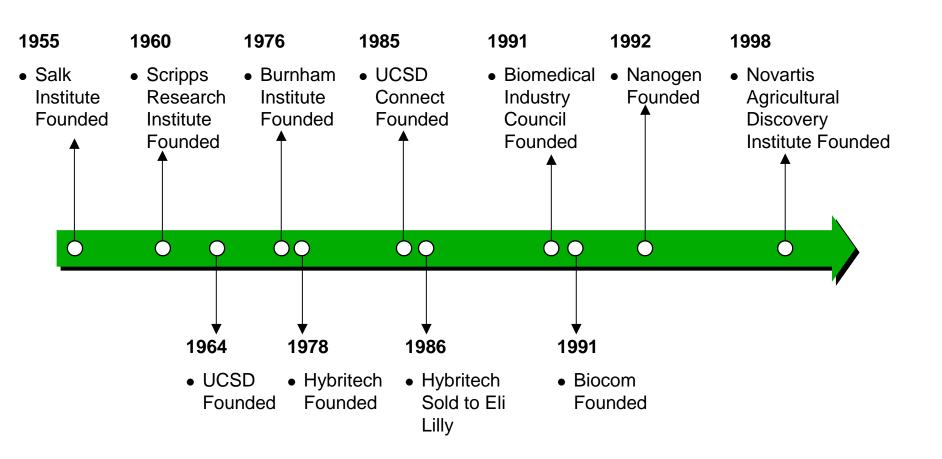
• E.g., State consumer protection laws

Regional Cluster

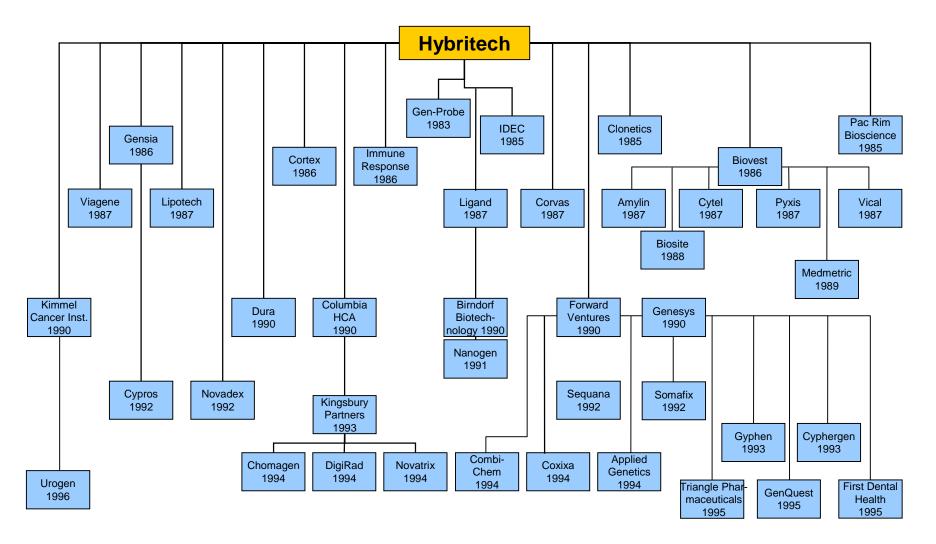
• E.g., Sophistication of local customers

Regional

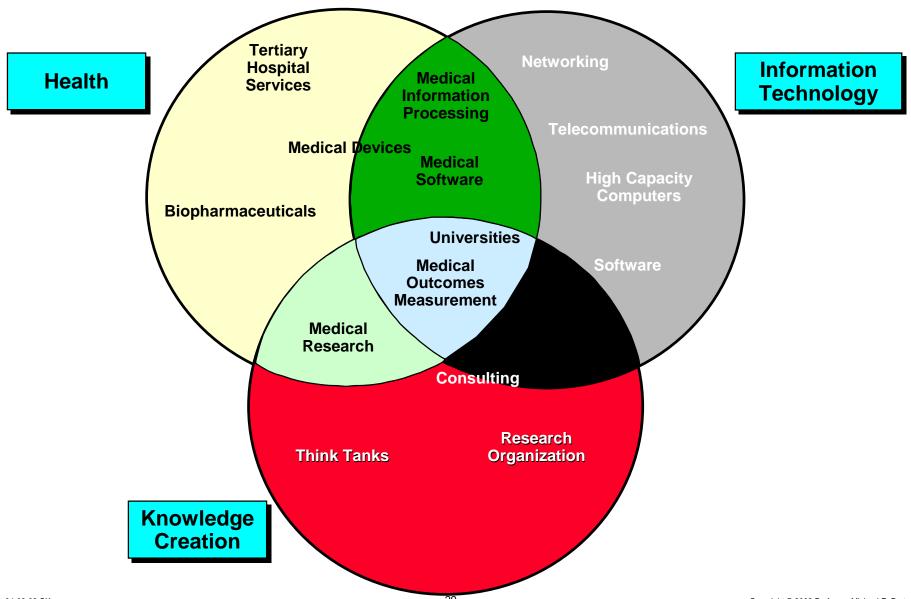
- E.g., Breadth of the regional economy
- E.g., Regional institutions for collaboration


Regional Cluster

• E.g., Presence of supplier industries


Regional Competitiveness and Innovative Capacity Key Findings from the Clusters of Innovation Project

- A strong physical and information infrastructure is a baseline requirement to establish and sustain a prosperous regional economy
- A strong K–12 educational system is the foundation for developing local talent and attracting outside talent
- Specialized talent and training are more important than abundant labor
- Universities and specialized research centers are the driving force behind innovation in nearly every region
- Mechanisms for commercialization are essential if innovation is to translate to economic success
- Government can have a significant influence on the business environment, both positively and negatively
- Poor coordination among local jurisdictions often impedes efforts to improve the business environment
- Regions face the need for strategic transitions, when the limits of the past strategy create the need for a new strategy


The Development of Clusters History of the San Diego Biotech / Pharma Cluster

Anchor Companies Spin-outs in the San Diego Biotech / Pharma Cluster

Opportunities at the Intersection of Clusters <u>Commonwealth of Massachusetts</u>

Creating and Implementing a Regional Economic Strategy Key Findings from the Clusters of Innovation Project

- A shared economic vision helps elicit broad support and coordinate activities
- Strong leadership is a necessary part of any successful economic development strategy
- Broad-based collaboration across business, government, universities, and other institutions is needed for development strategies to succeed
- An overarching organized structure for economic development helps coordinate and routinize the process
- Regions need to overcome transition points in the development of their economies
- Economic strategy must explicitly address inequality and economically distressed areas

Wales 04-03-02 CK Copyright © 2002 Professor Michael E. Porter

Transitions in Economic Development

An Economic Vision for the Research Triangle

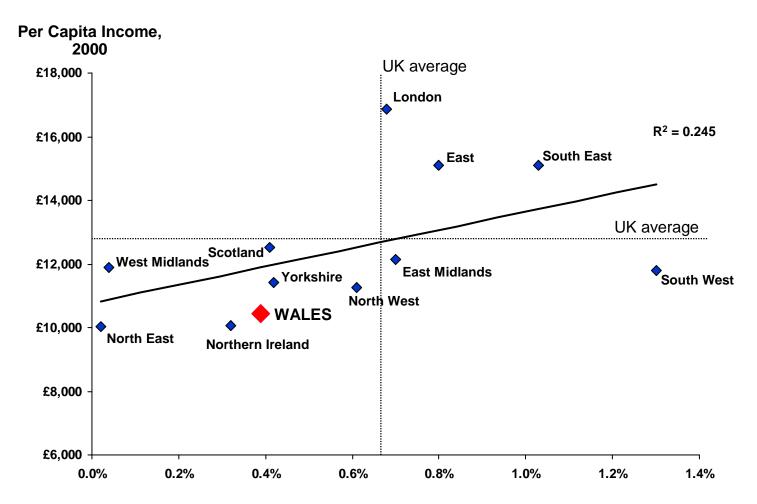
Research Triangle Park:
 Original vision of increasing employment narrow geographic area

New Strategy for the Region:
 An updated strategy is now needed after the success of the initial model

"High-tech" clusters:
 Concentrate efforts and resources on supporting a few specific clusters in technologically-intensive fields

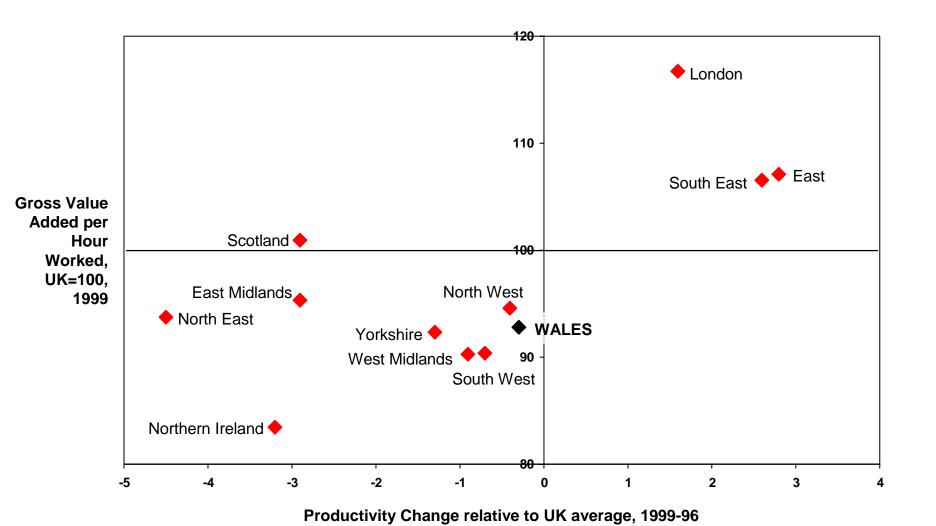
Broader innovation economy:
 Develop new and existing clusters

 Metro Area: Gathering scarce assets in a concentrated geographic area

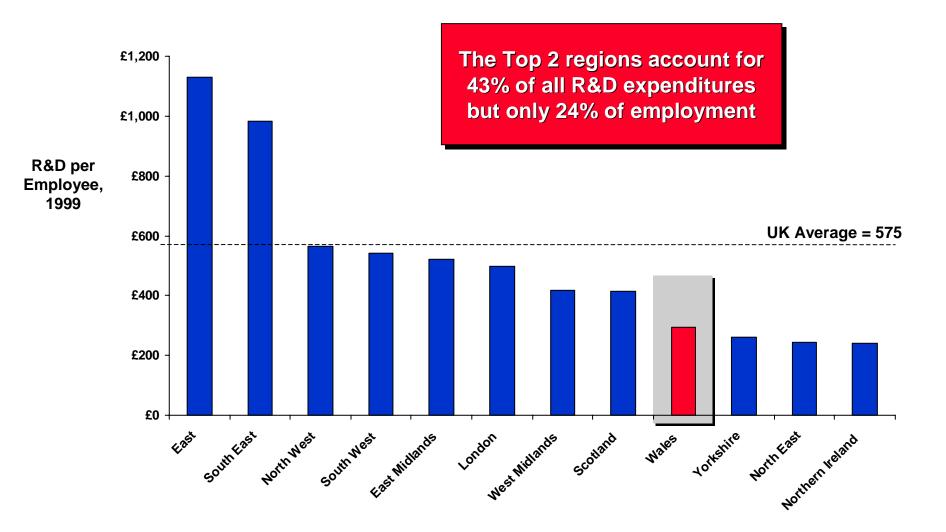

• Economic Area: Grow, attract, and support clusters relevant to a wider geographic region

Agenda

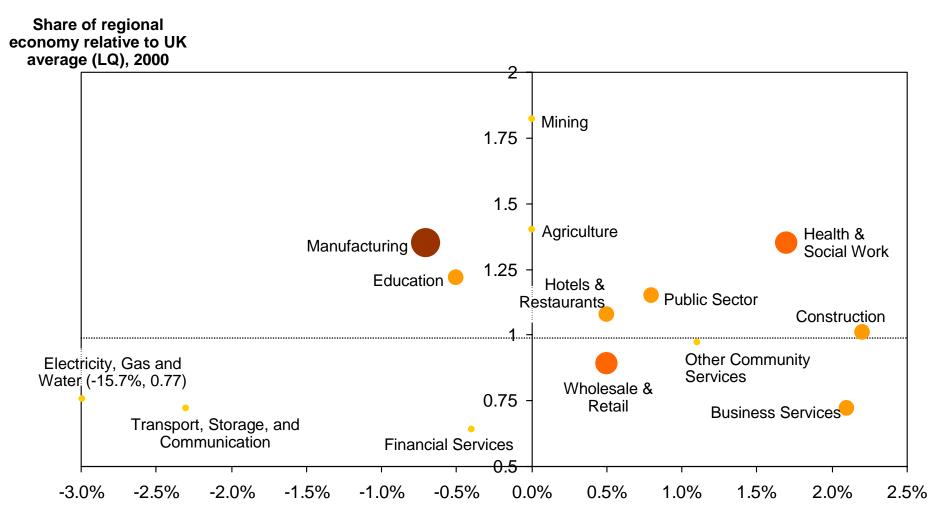
- Foundations of Competitiveness
- The Role of Regions in Competitiveness


Issues for Wales

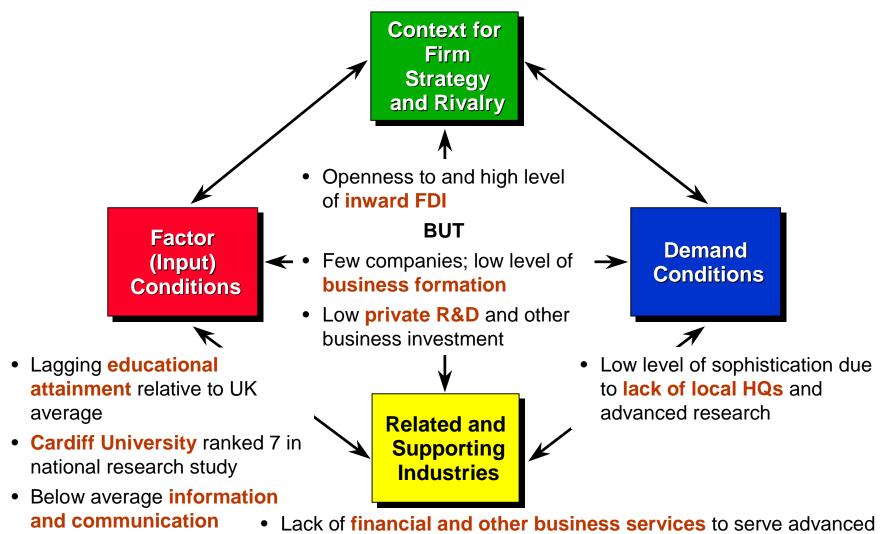
Welsh Economic Performance Prosperity and Growth by UK Region



Annual Growth in Employment, 1996-2000


Welsh Economic Performance Productivity Levels by UK Region

Welsh Innovation Research & Development Activity by UK Region



Composition of the Local and Traded Welsh Economy

Priorities in Enhancing the Microeconomic Business Environment

- cluster needsLow productivity in non-manufacturing
- Few well developed clusters, and limited interaction within clusters

infrastructure

Leading Welsh Holders of U.S. Patents <u>Total Patents per Organization, 1996-2000</u>

DOW CORNING LIMITED	12	
GYRUS MEDICAL LIMITED	7	
UNIVERSITY COLLEGE CARDIFF CONSULTANTS LIMITED	7	
SPRAYFORMING DEVELOPMENTS LIMITED	4	
LION LABORATORIES PLC	3	
TRIKON TECHNOLOGIES LIMITED	3	
UNIVERSITY OF WALES COLLEGE OF MEDICINE	3	
MASSACHUSETTS INSTITUTE OF TECHNOLOGY	2	
SOUTH GLAMORGAN HEALTH AUTHORITY	2	
UNIVERSITY COLLEGE OF WALES ABERYSTWYTH	2	
UNIVERSITY OF GLAMORGAN COMMERCIAL SERVICES LIMITED	2	
and 23 other organizations with 1 patent each		

Source: US PTO, author's calculations Wales 04-03-02 CK

Welsh Innovative Performance <u>Total U.S. Patents per UK University, 1996-2000</u>

55.	IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY & MEDICINE	36	
102.	UNIVERSITY COLLEGE OF LONDON	23	
102.	ISIS INNOVATION LTD. (OXFORD UNIVERSITY)	23	
107.	VICTORIA UNIVERSITY OF MANCHESTER	22	
137.	UNIVERSITY OF STRATHCLYDE	16	
164.	UNIVERSITY OF SHEFFIELD	13	
164.	UNIVERSITY OF SOUTHHAMPTON	13	
180.	UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY	12	
213.	UNIVERSITY OF GLASGOW THE, UNIVERSITY COURT OF	10	
237.	UNIVERSITY OF BIRMINGHAM	9	
237.	UNIVERSITY OF WARWICK	9	
261.	UNIVERSITY OF NOTTINGHAM	8	
289.	UNIVERSITY COLLEGE CARDIFF CONSULTANTS LIMITED	7	
289.	UNIVERSITY OF EDINBURGH	7	
289.	UNIVERSITY OF KEELE	7	
331.	DE MONTFORT UNIVERSITY	6	
331.	ROYAL FREE HOSPITAL SCHOOL OF MEDICINE	6	
331.	UNIVERSITY OF LIVERPOOL	6	
395.	CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LTD.	5	
395.	KING'S COLLEGE LONDON	5	
395.	NEWCASTLE UNIVERSITY VENTURES LIMITED	5	
395.	UNIVERSITY COURT OF THE UNIVERSITY OF DUNDEE	5	
395.	UNIVERSITY OF ABERDEEN	5	
395.	UNIVERSITY OF LEEDS	5	
	UNIVERSITY OF LEICESTER	5	

Note: Rank is rank among all UK holders of U.S. patents

Source: US PTO, author's calculations Wales 04-03-02 CK

Patenting Performance of U.S. Universities

Rank	University	Total Patents, 1995–1999
1	University of California	1,585
2	Massachusetts Institute of Technology	605
3	University of Texas	444
4	Wisconsin University	339
5	Stanford University	335
6	California Institute of Technology	299
7	Johns Hopkins University	275
8	Cornell University	266
9	University of Pennsylvania	253
10	State University of New York	217
11	University of Michigan	209
12	Iowa State University	208
13	Michigan State University	200
14	Columbia University	196
15	University of Minnesota	180
16	University of Washington	173
17	Harvard University	164
18	University of North Carolina	154
19	Washington University	151
20	Duke University	139
21	University of British Columbia	137
22	North Carolina State University	129
23	University of Nebraska	122
24	University of Utah	121
25	Penn State University	116

Action Agenda for Wales

- Address Weaknesses in the Welsh Business Environment
- Mount an aggressive cluster development strategy which also drives investment momentum
- Charge subregions with developing distinct strategies
- Create an integrating Welsh economic vision and an organizational structure for implementing

Address Weaknesses in the Welsh Business Environment

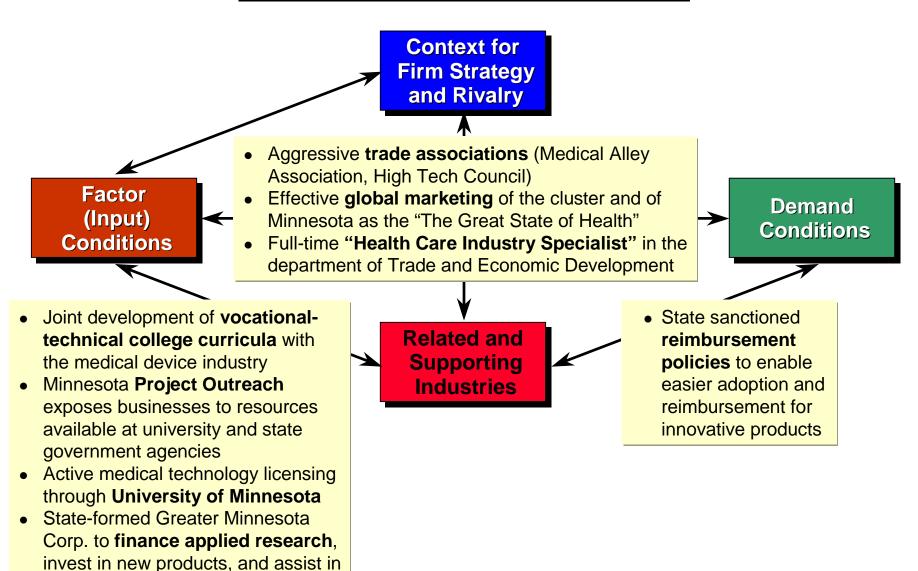
Factor Conditions

- Improve basic education
- Programs to integrate the 45+ workforce
- Link research and training to clusters

Demand

- Use public procurement as early / sophisticated demand
- Harness multinationals as sophisticated buyers and focus on supplier development
- Related and supporting industries
 - Program to attract and develop business services serving specific clusters
 - FDI promotion focused on clusters

The Development of Clusters


Create an explicit cluster development program

 Conscious efforts can meaningfully raise cluster competitiveness and innovative capacity

Recruit for clusters

Recruitment strategies should target strong and emerging clusters,
 not individual firms

Public / Private Cooperation in Cluster Upgrading Minnesota's Medical Device Cluster

technology transfer

Organizing to Compete

Massachusetts Governor's Council on Economic Growth and Technology

Governor's Council on Economic Growth and Technology

Industry Cluster Committees

- Advanced Materials
- Biotechnology and Pharmaceuticals
- Defense
- Marine Science and Technology
- Medical Devices
- Software
- Telecommunications
- Textiles
- Information Technology

Functional Task Forces

- International Trade
- Marketing
 Massachusetts
- Tax Policy and Capital Formation
- Technology Policy and Defense Conversion

Issue Groups

- Cost of Doing Business
- Financing Emerging Companies
- Health Care
- Western Massachusetts
- Business Climate
- Competitive Benchmarking

Action Agenda for Wales

- Address Weaknesses in the Welsh Business Environment
- Mount an aggressive cluster development strategy which also drives investment momentum
- Charge subregions with developing distinct strategies
- Create an integrating Welsh economic vision and an organizational structure for implementing